Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Leukoc Biol ; 112(5): 1053-1063, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1955915

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in severe immune dysfunction, hospitalization, and death. Many patients also develop long-COVID-19, experiencing symptoms months after infection. Although significant progress has been made in understanding the immune response to acute SARS-CoV-2 infection, gaps remain in our knowledge of how innate immunity influences disease kinetics and severity. We hypothesized that cytometry by time-of-flight analysis of PBMCs from healthy and infected subjects would identify novel cell surface markers and innate immune cell subsets associated with COVID-19 severity. In this pursuit, we identified monocyte and dendritic cell subsets that changed in frequency during acute SARS-CoV-2 infection and correlated with clinical parameters of disease severity. Subsets of nonclassical monocytes decreased in frequency in hospitalized subjects, yet increased in the most severe patients and positively correlated with clinical values associated with worse disease severity. CD9, CD163, PDL1, and PDL2 expression significantly increased in hospitalized subjects, and CD9 and 6-Sulfo LacNac emerged as the markers that best distinguished monocyte subsets amongst all subjects. CD9+ monocytes remained elevated, whereas nonclassical monocytes remained decreased, in the blood of hospitalized subjects at 3-4 months postinfection. Finally, we found that CD9+ monocytes functionally released more IL-8 and MCP-1 after LPS stimulation. This study identifies new monocyte subsets present in the blood of COVID-19 patients that correlate with disease severity, and links CD9+ monocytes to COVID-19 progression.


Subject(s)
COVID-19 , Humans , Monocytes , SARS-CoV-2 , Interleukin-8/metabolism , Lipopolysaccharides/metabolism , Myeloid Cells , Hospitalization , Tetraspanin 29/metabolism , Post-Acute COVID-19 Syndrome
2.
MEDLINE; 2020.
Non-conventional in English | MEDLINE | ID: grc-750510

ABSTRACT

The molecular properties of CD8 + T cells that respond to SARS-CoV-2 infection are not fully known. Here, we report on the single-cell transcriptomes of >80,000 virus-reactive CD8 + T cells from 39 COVID-19 patients and 10 healthy subjects. COVID-19 patients segregated into two groups based on whether the dominant CD8 + T cell response to SARS-CoV-2 was 'exhausted' or not. SARS-CoV-2-reactive cells in the exhausted subset were increased in frequency and displayed lesser cytotoxicity and inflammatory features in COVID-19 patients with mild compared to severe illness. In contrast, SARS-CoV-2-reactive cells in the non-exhausted subsets from patients with severe disease showed enrichment of transcripts linked to co-stimulation, pro-survival NF-κB signaling, and anti-apoptotic pathways, suggesting the generation of robust CD8 + T cell memory responses in patients with severe COVID-19 illness. CD8 + T cells reactive to influenza and respiratory syncytial virus from healthy subjects displayed polyfunctional features. Cells with such features were mostly absent in SARS-CoV-2 responsive cells from both COVID-19 patients and healthy controls non-exposed to SARS-CoV-2. Overall, our single-cell analysis revealed substantial diversity in the nature of CD8 + T cells responding to SARS-CoV-2.

3.
European Stroke Journal ; 6(1 SUPPL):58-59, 2021.
Article in English | EMBASE | ID: covidwho-1468035

ABSTRACT

Background and Aims: We evaluated whether stroke severity, functional outcome and mortality are different in patients with ischemic stroke with or without COVID-19 infection. Methods: A prospective, observational, multicentre cohort study in Catalonia, Spain. Recruitment was consecutive from mid-March to mid-May 2020. Patients had had an acute ischemic stroke within 48 hours and a previous modified Rankin scale (mRS) score of 0 to 3. We collected demographic data, vascular risk factors, prior mRS score, NIHSS score, rate of reperfusion therapies, logistics and metrics. Primary end-point was functional outcome at 3 months. Favourable outcome was defined depending on the previous mRS score. Secondary outcome was mortality at 3 months. We performed mRS shift and multivariate analyses. Results: We evaluated 701 patients (mean age 72.3±13.3 years, 60.5% men), and 91 (13%) had COVID-19 infection. Median baseline NIHSS score was higher in COVID-19 patients compared to patients without COVID-19 [8 (3-18) vs 6 (2-14), p=0.049)]. Proportion of patients with a favourable functional outcome was 33.7% in the COVID-19 and 47% in the non-COVID-19 group. However, after a multivariate logistic regression analysis, COVID-19 infection did not increase the probability of unfavourable functional outcome. Mortality rate was 39.3% among COVID-19 patients and 16.1% in the non-COVID-19 group. In the multivariate logistic regression analysis, COVID-19 infection was a risk factor for mortality (HR 3.14 (95% CI, 2.10-4.71;p<0.001). Conclusions: Patients with ischemic stroke and COVID-19 infection have more severe strokes and higher mortality than stroke patients without COVID-19 infection. However, functional outcome is comparable in both groups.

4.
Cell Host Microbe ; 29(4): 551-563.e5, 2021 04 14.
Article in English | MEDLINE | ID: covidwho-1101147

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by a burst in the upper respiratory portal for high transmissibility. To determine human neutralizing antibodies (HuNAbs) for entry protection, we tested three potent HuNAbs (IC50 range, 0.0007-0.35 µg/mL) against live SARS-CoV-2 infection in the golden Syrian hamster model. These HuNAbs inhibit SARS-CoV-2 infection by competing with human angiotensin converting enzyme-2 for binding to the viral receptor binding domain (RBD). Prophylactic intraperitoneal or intranasal injection of individual HuNAb or DNA vaccination significantly reduces infection in the lungs but not in the nasal turbinates of hamsters intranasally challenged with SARS-CoV-2. Although postchallenge HuNAb therapy suppresses viral loads and lung damage, robust infection is observed in nasal turbinates treated within 1-3 days. Our findings demonstrate that systemic HuNAb suppresses SARS-CoV-2 replication and injury in lungs; however, robust viral infection in nasal turbinate may outcompete the antibody with significant implications to subprotection, reinfection, and vaccine.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , SARS-CoV-2/immunology , Turbinates/virology , Angiotensin-Converting Enzyme 2/physiology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Cricetinae , Female , HEK293 Cells , Humans , Male , Mesocricetus , Viral Load
5.
Sci Immunol ; 6(55)2021 01 21.
Article in English | MEDLINE | ID: covidwho-1042797

ABSTRACT

The molecular properties of CD8+ T cells that respond to SARS-CoV-2 infection are not fully known. Here, we report on the single-cell transcriptomes of >80,000 virus-reactive CD8+ T cells, obtained using a modified Antigen-Reactive T cell Enrichment (ARTE) assay, from 39 COVID-19 patients and 10 healthy subjects. COVID-19 patients segregated into two groups based on whether the dominant CD8+ T cell response to SARS-CoV-2 was 'exhausted' or not. SARS-CoV-2-reactive cells in the exhausted subset were increased in frequency and displayed lesser cytotoxicity and inflammatory features in COVID-19 patients with mild compared to severe illness. In contrast, SARS-CoV-2-reactive cells in the dominant non-exhausted subset from patients with severe disease showed enrichment of transcripts linked to co-stimulation, pro-survival NF-κB signaling, and anti-apoptotic pathways, suggesting the generation of robust CD8+ T cell memory responses in patients with severe COVID-19 illness. CD8+ T cells reactive to influenza and respiratory syncytial virus from healthy subjects displayed polyfunctional features and enhanced glycolysis. Cells with such features were largely absent in SARS-CoV-2-reactive cells from both COVID-19 patients and healthy controls non-exposed to SARS-CoV-2. Overall, our single-cell analysis revealed substantial diversity in the nature of CD8+ T cells responding to SARS-CoV-2.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Female , Glycolysis/immunology , Humans , Immunologic Memory/immunology , Male , Middle Aged , NF-kappa B/immunology , Signal Transduction/immunology , Single-Cell Analysis/methods , Young Adult
6.
SSRN ; : 3641939, 2020 Jul 07.
Article in English | MEDLINE | ID: covidwho-892408

ABSTRACT

The contribution of CD4+ T cells to protective or pathogenic immune responses to SARS-CoV-2 infection remains unknown. Here, we present large-scale single-cell transcriptomic analysis of viral antigen-reactive CD4+ T cells from 32 COVID-19 patients. In patients with severe disease compared to mild disease, we found increased proportions of cytotoxic follicular helper (TFH) cells and cytotoxic T helper cells (CD4-CTLs) responding to SARS-CoV-2, and reduced proportion of SARS-CoV-2 reactive regulatory T cells. Importantly, the CD4-CTLs were highly enriched for the expression of transcripts encoding chemokines that are involved in the recruitment of myeloid cells and dendritic cells to the sites of viral infection. Polyfunctional T helper (TH)1 cells and TH17 cell subsets were underrepresented in the repertoire of SARS-CoV-2-reactive CD4+ T cells compared to influenza-reactive CD4+ T cells. Together, our analyses provide so far unprecedented insights into the gene expression patterns of SARS-CoV-2 reactive CD4+ T cells in distinct disease severities. Funding: This work was funded by NIH grants U19AI142742 (P.V., A.S., C.H.O), U19AI118626 (P.V., A.S., G.S.), R01HL114093 (P.V., F.A., G.S.,), R35-GM128938 (F.A), S10RR027366 (BD FACSAria-II), S10OD025052 (Illumina Novaseq6000), the William K. Bowes Jr Foundation (P.V.), and Whittaker foundation (P.V., C.H.O.). Supported by the Wessex Clinical Research Network and National Institute of Health Research UK. Conflict of Interest: The authors declare no competing financial interests. Ethical Approval: Ethical approval for this study from the Berkshire Research Ethics Committee 20/SC/0155 and the Ethics Committee of La Jolla Institute for Immunology (LJI) was in place. Written consent was obtained from all subjects.

7.
Cell ; 183(5): 1340-1353.e16, 2020 11 25.
Article in English | MEDLINE | ID: covidwho-888424

ABSTRACT

The contribution of CD4+ T cells to protective or pathogenic immune responses to SARS-CoV-2 infection remains unknown. Here, we present single-cell transcriptomic analysis of >100,000 viral antigen-reactive CD4+ T cells from 40 COVID-19 patients. In hospitalized patients compared to non-hospitalized patients, we found increased proportions of cytotoxic follicular helper cells and cytotoxic T helper (TH) cells (CD4-CTLs) responding to SARS-CoV-2 and reduced proportion of SARS-CoV-2-reactive regulatory T cells (TREG). Importantly, in hospitalized COVID-19 patients, a strong cytotoxic TFH response was observed early in the illness, which correlated negatively with antibody levels to SARS-CoV-2 spike protein. Polyfunctional TH1 and TH17 cell subsets were underrepresented in the repertoire of SARS-CoV-2-reactive CD4+ T cells compared to influenza-reactive CD4+ T cells. Together, our analyses provide insights into the gene expression patterns of SARS-CoV-2-reactive CD4+ T cells in distinct disease severities.


Subject(s)
COVID-19/immunology , SARS-CoV-2/genetics , T Follicular Helper Cells/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Regulatory/immunology , Transcriptome , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , CD4 Lymphocyte Count , COVID-19/epidemiology , COVID-19/virology , Cohort Studies , England/epidemiology , Female , Humans , Male , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction , Severity of Illness Index , Single-Cell Analysis/methods , Spike Glycoprotein, Coronavirus/immunology
8.
bioRxiv ; 2020 Jul 10.
Article in English | MEDLINE | ID: covidwho-664327

ABSTRACT

The molecular properties of CD8 + T cells that respond to SARS-CoV-2 infection are not fully known. Here, we report on the single-cell transcriptomes of >80,000 virus-reactive CD8 + T cells from 39 COVID-19 patients and 10 healthy subjects. COVID-19 patients segregated into two groups based on whether the dominant CD8 + T cell response to SARS-CoV-2 was 'exhausted' or not. SARS-CoV-2-reactive cells in the exhausted subset were increased in frequency and displayed lesser cytotoxicity and inflammatory features in COVID-19 patients with mild compared to severe illness. In contrast, SARS-CoV-2-reactive cells in the non-exhausted subsets from patients with severe disease showed enrichment of transcripts linked to co-stimulation, pro-survival NF-κB signaling, and anti-apoptotic pathways, suggesting the generation of robust CD8 + T cell memory responses in patients with severe COVID-19 illness. CD8 + T cells reactive to influenza and respiratory syncytial virus from healthy subjects displayed polyfunctional features. Cells with such features were mostly absent in SARS-CoV-2 responsive cells from both COVID-19 patients and healthy controls non-exposed to SARS-CoV-2. Overall, our single-cell analysis revealed substantial diversity in the nature of CD8 + T cells responding to SARS-CoV-2.

9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.17.209304

ABSTRACT

The COVID-19 pandemic represents an ongoing global crisis that has already impacted over 13 million people. The responses of specific immune cell populations to the disease remain poorly defined, which hinders improvements in treatment and care management. Here, we utilized mass cytometry (CyTOF) to thoroughly phenotype peripheral myeloid cells and T lymphocytes from 30 convalescent patients with mild, moderate, and severe cases of COVID-19. We identified 10 clusters of monocytes and dendritic cells and 17 clusters of T cells. Examination of these clusters revealed that both CD14+CD16+ intermediate and CD14dimCD16+ nonclassical monocytes, as well as CD4+ stem cell memory T (TSCM) cells, correlated with COVID-19 severity, coagulation factor levels, and/or inflammatory indicators. We also identified two nonclassical monocyte subsets distinguished by expression of the sugar residue 6-Sulfo LacNac (Slan). One of these subsets (Slanlo, nMo1) was depleted in moderately and severely ill patients, while the other (Slanhi, nMo2) increased with disease severity and was linked to CD4+ T effector memory (TEM) cell frequencies, coagulation factors, and inflammatory indicators. Intermediate monocytes tightly correlated with loss of naive T cells as well as an increased abundance of effector memory T cells expressing the exhaustion marker PD-1. Our data suggest that both intermediate and non-classical monocyte subsets shape the adaptive immune response to SARS-CoV-2. In summary, our study provides both broad and in-depth characterization of immune cell phenotypes in response to COVID-19 and suggests functional interactions between distinct cell types during the disease. One Sentence SummaryUse of mass cytometry on peripheral blood mononuclear cells from convalescent COVID-19 patients allows correlation of distinct monocyte and T lymphocyte subsets with clinical factors.


Subject(s)
COVID-19
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.09.194027

ABSTRACT

The molecular properties of CD8+ T cells that respond to SARS-CoV-2 infection are not fully known. Here, we report on the single-cell transcriptomes of >80,000 virus-reactive CD8+ T cells from 39 COVID-19 patients and 10 healthy subjects. COVID-19 patients segregated into two groups based on whether the dominant CD8+ T cell response to SARS-CoV-2 was exhausted or not. SARS-CoV-2-reactive cells in the exhausted subset were increased in frequency and displayed lesser cytotoxicity and inflammatory features in COVID-19 patients with mild compared to severe illness. In contrast, SARS-CoV-2-reactive cells in the non-exhausted subsets from patients with severe disease showed enrichment of transcripts linked to co-stimulation, pro-survival NF-{kappa}B signaling, and anti-apoptotic pathways, suggesting the generation of robust CD8+ T cell memory responses in patients with severe COVID-19 illness. CD8+ T cells reactive to influenza and respiratory syncytial virus from healthy subjects displayed polyfunctional features. Cells with such features were mostly absent in SARS-CoV-2 responsive cells from both COVID-19 patients and healthy controls non-exposed to SARS-CoV-2. Overall, our single-cell analysis revealed substantial diversity in the nature of CD8+ T cells responding to SARS-CoV-2.


Subject(s)
COVID-19 , Drug-Related Side Effects and Adverse Reactions
11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.12.148916

ABSTRACT

The contribution of CD4+ T cells to protective or pathogenic immune responses to SARS-CoV-2 infection remains unknown. Here, we present large-scale single-cell transcriptomic analysis of viral antigen-reactive CD4+ T cells from 32 COVID-19 patients. In patients with severe disease compared to mild disease, we found increased proportions of cytotoxic follicular helper (TFH) cells and cytotoxic T helper cells (CD4-CTLs) responding to SARS-CoV-2, and reduced proportion of SARS-CoV-2 reactive regulatory T cells. Importantly, the CD4-CTLs were highly enriched for the expression of transcripts encoding chemokines that are involved in the recruitment of myeloid cells and dendritic cells to the sites of viral infection. Polyfunctional T helper (TH)1 cells and TH17 cell subsets were underrepresented in the repertoire of SARS-CoV-2-reactive CD4+ T cells compared to influenza-reactive CD4+ T cells. Together, our analyses provide so far unprecedented insights into the gene expression patterns of SARS-CoV-2 reactive CD4+ T cells in distinct disease severities.


Subject(s)
COVID-19 , Virus Diseases
SELECTION OF CITATIONS
SEARCH DETAIL